INOut10 RoboBrick (Revision B)

This is the Revision A version of the InOut10 RoboBrick. The status of this project is that it has been
replaceed by the revision C version.

InOut10 Robobrick (Revision B)

Table of Contents

This document is also available_in PDF format.

1. Introduction
* 2. Programming
« 3. Hardware
¢ 3.1 Circuit Schematic
¢ 3.2 Printed Circuit Board
» 4, Software
e 5. Issues

1. Introduction

The InOut10 RoboBrick provides the ability to input and output 10 bits of data. The direction of each bit can
be changed under program control.

2. Programming

The basic operation is to send a query to the In8 RoboBrick to read the 4 bits of data. The programmer can
download a complement mask to cause any of the bits to be complemented prior to reading.

The In8 RoboBrick supports RoboBrick Interrupt Protocol. The interrupt pending bit is set whenever the the
formula:

L&(~1) | H&I | R&(~P)&l | F&P&(~1)]

is non-zero, where:

« | is the current input bits XOR'ed with the complement mask (C)

* P is the previous value of |

* L is the low mask

* H is the high mask

* R is the raising mask

* Fis the falling mask
and

* ~ is bit-wise complement

* | is bit-wise OR

* & is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

InOut10 Robobrick (Revision B) 1

INnOut10 RoboBrick (Revision B)

The In8 RoboBrick supports both the standard shared commands and the shared interrupt commands in
addition to the following commands:

Send/ Byte Value . .
Command . Discussion

Receive| 7 (6|54 [3[2]|1]0

Send |0 |0 |0 [0 [0 [0 |0 |0 |Returnlow order 5-bits of inplit
Read Inputs Low _ L | il (after XOR'ing with

Receive 0 (0 0|l |i I | |l |complement mask)

Send |00 0|0 [0 [0 |0 |1 |Return high order 5-bits of
Read Inputs High _ input Il (after XOR'ing with

Receive [0 (0 0 |l I I |l I |complement mask)
Read Complement ([Send |0 [0 |0 [0 [0 |0 |1 |0 |Return low order 5-bits of
Mask Low Receive |0 [0 [0 Ic lc lc lc lc |complement mask cccce
Read Complement [Send |0 |0 |0 [0 [0 [0 |1 |1 |Return high order 5 bits of
Mask High Receive |0 [0 [0 |Ic |c Ic |c |c |complement mask CCCCC
Read Direction Mas}send |0 [0 |0 [0 [0 |1 |0 |0 |Return low order 5-bits of
Low Receivelo [0 |0 Id d |d |d |d |direction mask ddddd
Read Direction Massend |0 [0 |0 |0 |0 |2 |0 |1 |Return high order 5 bits of
High Receivelo [0 0 ID ID |ID |[D |D |direction mask DDDDD

Send [0]0]0]0 |0 [1 |1 [0 |Returnlow order 5-bits of raw

input data rrrrr (without
XOR'ing with complement
mask)

Send |00 [0 [0 [0 |2 |1 |1 |Return high order 5-bits of raw
input data RRRRR (without
XOR'ing with complement

Read Raw Low _
Receive [0 |0 |0

_‘
=
=
=
=

Read Raw High

o
o
o
Py
Py
Py
Py
Py

Receive

mask)
Read LowMask ([Send |0 |0 [0 [0 [1 [0 |0 |0 |Return low order 5-bits of low
Low Receive [0 J0 [0 || I I || |i |masklil
Read Low Mask [Send |0 |0 [0 |0 (1 [0 [0 |1 |Return high order 5-bits of low
High Receive |0 [0 [0 |L L L [L [[maskLLLLL
Read HighMask ([Send |0 |0 |0 [0 [1 [0 |1 |0 |Return low order 5-bits of the
Low Receive[0 [0 |0 |h |h |h |h |[h [high mask hhhhh
Read HighMask ([Send |0 |0 |0 [0 [1 [0 |1 |1 |Return high order 5 bits of the
High Receive |0 [0 [0 |H |H |H [H |H |high mask HHHHH
Read Raising Mask|Send |0 |0 [0 |0 |1 1 [0 |0 |Return low order 5-hits of the
Low Receivelo [0 [0 |r Ir Ir Ir |r [raising mask rrrrr
Read Raising Mask|Send |0 |0 [0 |0 (1 |1 [0 |1 |Return high order 5 bits of the
High Receivelo [0 10 IR IR IR IR |rR |raising mask RRRRR
Read Falling Mask |Send [0 [0 |0 [0 |1 |2 |1 [0 |Return low order 5-bits of the
Low Receivelo lolof [I [f | [falling mask fffff
Read Falling Mask [Send [0 |0 [0 |0 (1 (1 [1 |1 |Return high order 5-bits of thd
High Receive 0o [0 [0 |[F |IFE |F |F |F [|falling mask FFFFF
Read Outputs Low [Send |0 |0 [0 |1 [0 [0 [0 |O

InOut10 Robobrick (Revision B) 2

InOut10 RoboBrick (Revision B)

n

n

[

=

>

—

Receive |0 |0 [0 |o [0 [0 [0 |0 |Return low order 5-bits of the
outputs 00000
.. |Send [0]0[0]1 |0 |0 [0 |1 [Return high order 5-bits of thg
Read Outputs High
i 9 lReceive 0 [0 o [0 Jo o [o |o Jeutputs 00000
Set Complement [Send [0 |0 |0 (1 |0 |0 |1 |0 [Setlow order 5-bits of
Mask Low Send 0lolole lc lc lc |c |complement mask to cccce
Set Complement [Send [0 |0 [0 |1 |0 |0 [1 [1 [Set high order 5 bits of
Mask High Send 010 lolc Ic Ic [c |c |complement mask to CCCCC
Set Direction Mask [Send [0 |0 |0 [1 |0 |1 |0 |0 [Setlow order 5-bits of directig
Low Send lololold |d [d |d [d |maskto ddddd
Set Direction Mask [Send |0 [0 |0 |1 |0 |1 |0 |1 |Set high order 5 bits of directig
High Send olololpb D Ipb Ib |[p |mask of DDDDD
Reset Outputs Send |0|0|0|1 [0 |1 [1 |0 [Setall 10 bits of outputsto O
. Reset all registers to 0 and se
Reset Everything [Send [0 |0 (0|1 [0 (1 [1 |1 direction bits to 1 (input)
Set Low Mask Low Send |0|0[0 1 [1 |0 |0 |0 |Setlow order 5-bits of low
Send [0fojo i | |1 | |i |masktolll
Set Low Mask High Send 00|01 [1 |0 |0 |1 |Sethigh order 5-bits of low
Send [ofojofu |L |u |L |u |masktoLLLLL
Set High Mask Low Send 00|01 [1 |0 |1 |0 |Setlow order 5-bits of the hig
Send [0[0[0|h |h |h |h |h |masktohhhhh
, . I1Send |0 (0|01 (1 |0 |1 |1 |Sethigh order 5 bits of the hig
Set High Mask Hi
J Msend [0 [0 o |0 |H |H |1 |1 |mask to HHHHH
Set RaisingMask [Send [0 |0 |0 (1 |1 |1 |0 |0 |Setlow order 5-bits of the
Low Send olololr Ir Ir Ir |r [raising mask to rrrrr
Set Raising Mask [Send [0 |0 [0 |1 |1 |1 [0 [1 [Set high order 5 bits of the
High Send 0o lo|R IR IR IR [R [raising mask to RRRRR
SetFallingMask [Send |0 (0|0 |1 |1 |1 |1 |0 |Setlow order 5-bits of the
Low Send lolololf I f lf |f [fallingmask to fffff
SetFallingMask [Send |0 |0 |0 |1 |1 |1 [1 |1 |Sethigh order 5-bits of the
High Send olololF IF IF IF |F [falling mask to FFFFF
Set Outputs Low |Send [0 |0 |1 [o |0 |o |o |o |Setlow order 5-bits to 00000
: Set high order 5-hits to
Set Outputs High [Send [0 |1 |0 [O |O |O |O |O 00000
Set Output Bit Send |01 |1 (v [b |b |b |b |Setoutput bit bbbb tov
Read Interrupt Bits Send |11]2 [0 [1 |2 |1 |1 |Return thg interrupt pendlngb
Receive[0 [0 |0 |0 |0 |0 |e |p p and the interrupt enable bit e.
SCLIRICIIET Send 111|111 |0 |c [c |c [SetInterrupt Command ccc.
Commands
Shared Commands|Send (1 |1 |1 (1 |1 |c |c |c |Execute Shared Command cc

InOut10 Robobrick (Revision B)

INOut10 RoboBrick (Revision B)

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the InOut10 RoboBrick is shown below:

. N3
?» PHR
2
c1 - »OUTS
»OUTS
Yy
<GND
13
u1 RBO
12
RB1 NZ
10 1
N1 RCO »OUTO
1 9 2
GND ¢ RC1 » OUTA1
8 3
NC & RCZ »OUTZ
3 1 7 H
PHR> & VDD RC3 »OUT3
| H 6 5
SIN> RB3 RCH »OUTH
s 11 5 6
sSOUT ¢ RBZ RCS » OUTS
14 3 rd
& Uss RBY = - »OUTSE
RBS »OUTZ
PIC16C505
INOUT10 ROBOBRICK MODULE (REV. B)
COPYRIGHT (C) Z0O01 -- HAYNE C. GRAMLICH

The patrts list kept in a separate file_—— inout10.ptl.

3.2 Printed Circuit Board

The printed circuit files are listed below:

inout10_back.png
The solder side layer.

inout10_front.png
The component side layer.

inout10_artwork.png
The artwork layer.

inout10.gbl
The RS-274X "Gerber" back (solder side) layer.

inout10.qtl
The RS-274X "Gerber" top (component side) layer.

inout10.gal
The RS-274X "Gerber" artwork layer.

inout10.drl

3. Hardware

INOut10 RoboBrick (Revision B)

The "Excellon" NC drill file.
inout10.tol
The "Excellon" tool rack file.

4. Software

The InOutl0 software is available as one of:

inout10.ucl
The pCL source file.
inoutl0.asm
The resulting human readable PIC assembly file.
inout10.Ist
The resulting human readable PIC listing file.
inout10.hex
The resulting Intél Hex file that can be fed into a PIC12C5xx programmer.

The InOutl0 test suite is available as one of:

inoutl10_test.ucl
The pCL source file.
inoutlQ_test.asm
The resulting human readable PIC assembly file.
inoutl0_test.Ist
The resulting human readable PIC listing file.
inoutl0_test.hex
The resulting Intél Hex file that can be fed into a PIC16F84 programmer.

5. Issues

The following fabrication issues came up:

 Think about adding some in—line 220 Ohm resistors for powering LED's.
 Think about adding some 10K Ohm pull up resistors for bump sensors.

Copyright (c) 2001-2002 by Wayne C. Gramlich. All rights reserved.

4. Software

INOut10 RoboBrick (Revision B)

4. Software

INOut10 RoboBrick (Revision B)

A. Appendix A: Parts List

Parts list for InOut10 RoboBrick (Rev. B)

#

C1: CapacitorlOpF - 10 pF Ceramic Capacitor [Jameco: 15333]

N1: Header1x5.RBSlave — 1x5 Male Header [5/40 Jameco: 160881]

N2: TerminalStrip8.InOut10 - 8 Junction Terminal Strip [4 Jameco: 189675]

N3: TerminalStrip4.InOut10 - 4 Junction Terminal Strip [2 Jameco: 189675]

U1: PIC16C505.InOut10 — Microchip PIC16C505 [Digikey: PIC16C505-04/P—-ND]

A. Appendix A: Parts List

INOut10 RoboBrick (Revision B)

B. Appendix B: Artwork Layer

INODUT10-B

B. Appendix B: Artwork Layer

INOut10 RoboBrick (Revision B)

C. Appendix C: Back (Solder Side) Layer

INODUT10-B

©00080

© O

®

o

o), © ©

%
0% o

o

C. Appendix C: Back (Solder Side) Layer

INOut10 RoboBrick (Revision B)

D. Appendix D: Front (Component Side) Layer

a
o
o
o
o

D. Appendix D: Front (Component Side) Layer

10

