This is the Revision A verion of the IO8 Module. The status of this project is finished.

IO8 Module (Revision A)

Table of Contents

This document is also available in PDF format.

- <u>1. Introduction</u>
- <u>2. Programming</u>
- <u>3. Hardware</u>
 - ♦ <u>3.1 Circuit Schematic</u>
 - ◆ <u>3.2 Printed Circuit Board</u>
- <u>4. Software</u>
- <u>5. Issues</u>

1. Introduction

The IO8 Module is used to provide 8–pins of of I/O capability. Each I/O pin can independently used as digital input, an analog input, or a digital output. The analog input is at 10–bits or resolution based off of a internal 5–volt reference or an externally supplied voltage reference.

2. Programming

<u>Module Interrupt Protocol</u> for those lines that are being used as inputs. The interrupt pending bit is set whenever the the formula:

 $L\&({\sim}I) \mid H\&I \mid R\&({\sim}P)\&I \mid F\&P\&({\sim}I)$

is non-zero, where:

- I is the current input bits XOR'ed with the complement mask (C)
- P is the previous value of I
- L is the low mask
- H is the high mask
- R is the raising mask
- F is the falling mask

and

- ~ is bit-wise complement
- | is bit-wise OR
- & is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the <u>common shared commands</u> and the <u>shared interrupt commands</u>, the AnalogIn4 Module supports following commands:

Command	Send/ Receive	Byte Value								Discussion
		7	6	5	4	3	2	1	0	Discussion
Read Inputs	Send	0	0	0	0	0	0	0	0	Return 8-bits of input iiii iiii (after XOR'ing with
	Receive	i	i	i	i	i	i	i	i	complement mask)
Read Outputs	Send	0	0	0	0	0	0	0	1	Return 8–bits of the outputs <i>0000 0000</i> (after XOR'ing with complement mask.)
	Receive	0	0	0	0	0	0	0	0	
Read Complement Mask	Send	0	0	0	0	0	0	1	0	Return 8–bits of complement mask <i>cccc cccc</i>
	Receive	с	с	с	с	с	с	с	с	
Read Direction Mask	Send	0	0	0	0	0	0	1	1	Return 8-hits of direction mask dddd dddd
	Receive	d	d	d	d	d	d	d	d	Return of onts of uncertoir mask tutut tutut
Read Low Mask	Send	0	0	0	0	0	1	0	0	Return 8–bits of low mask <i>llll llll</i>
	Receive	l	l	l	l	l	l	l	l	
Read High Mask	Send	0	0	0	0	0	1	0	1	Return 8–bits of the high mask hhhh hhhh
Read Flight Mask	Receive	h	h	h	h	h	h	h	h	
Read Rising Mask	Send	0	0	0	0	0	1	1	0	Paturn 8 bits of the rising mask area area
	Receive	r	r	r	r	r	r	r	r	Return 6–bits of the fishig mask <i>fift fift</i>
Read Falling Mask	Send	0	0	0	0	0	1	1	1	Return 8–bits of the falling mask <i>ffff ffff</i>
	Receive	f	f	f	f	f	f	f	f	
Read Raw	Send	0	0	0	0	1	0	0	0	Return 8-bits of raw input data rrrr rrrr (without
	Receive	r	r	r	r	r	r	r	r	XOR'ing with complement mask)
Read Analog Mask	Send	0	0	0	0	1	0	0	1	Return the Analog mask <i>aaaa aaaa</i> .
	Receive	а	а	а	а	а	а	а	а	
Read Outputs Raw	Send	0	0	0	0	1	0	1	0	Return the raw outputs as <i>0000 0000</i> with no complement mask.
	Receive	0	0	0	0	0	0	0	0	
Read Analog VRef	Send	0	0	0	0	1	0	1	1	Return the analog Vref at v (0 = 5 volts, 1 = IO1).
	Receive	0	0	0	0	0	0	0	v	
Reset Outputs	Send	0	0	0	1	0	0	0	0	Set all 8 bits of outputs to 0 (then XOR with complement mask).
Set Outputs	Send	0	0	0	1	0	0	0	1	Set output bits to <i>0000 0000</i> .
	Send	0	0	0	0	0	0	0	0	
Set Complement Mask	Send	0	0	0	1	0	0	1	0	Set 8-bits of complement mask to <i>cccc cccc</i>
	Send	с	с	с	с	с	с	с	с	
Set Direction Mask	Send	0	0	0	1	0	0	1	1	Set 8–bits of direction mask to <i>dddd dddd</i>
	Send	d	d	d	d	d	d	d	d	1=input; 0=output
Set Low Mask	Send	0	0	0	1	0	1	0	0	Set 8–bits of low mask to <i>llll llll</i>
	Send	l	l	l	l	l	l	l	l	
Set High Mask	Send	0	0	0	1	0	1	0	1	Set 8–bits of the high mask to <i>hhhh hhhh</i>
	Send	h	h	h	h	h	h	h	h	
Set Rising Mask	Send	0	0	0	1	0	1	1	0	Set 8-bits of the rising mask to <i>rrrr rrrr</i>
	Send	r	r	r	r	r	r	r	r	
Set Falling Mask	Send	0	0	0	1	0	1	1	1	Set 8-bits of the falling mask to ffff ffff
	Send	f	f	f	f	f	f	f	f	

IO8 Module (Revision A)

Set Outputs Raw	Send	0	0	0	1	1	0	0	0	Set 8–bits to <i>0000 0000</i> with no complement mask.
	Send	0	0	0	0	0	0	0	0	
Set Analog Mask	Send	0	0	0	1	1	0	0	1	Set analog mask to <i>aaaa aaaa</i> .
	Send	а	а	а	а	а	а	а	а	
Set Analog VRef	Send	0	0	0	1	1	0	1	v	Set A/D converted Voltage reference mode to v (0 = 5 volts, 1 = external).
Reset Everything	Send	0	0	0	1	1	1	1	1	Reset all registers to 0 and set direction bits to 1 (input)
Set Output Bit	Send	0	0	1	0	v	b	b	b	Set output bit <i>bbbb</i> to <i>v</i>
Set Outputs Low	Send	0	1	0	0	l	l	l	l	Set low order 4–bits of Outputs to <i>llll</i> and then XOR complement mask
Set Outputs High	Send	0	1	0	1	h	h	h	h	Set high order 4–bits of Outputs to <i>hhhh</i> and and then XOR complement mask
Set Direction Low	Send	0	1	1	0	l	l	l	l	Set low order 4–bits of direction to <i>llll</i> .
Set Direction High	Send	0	1	1	1	h	h	h	h	Set high order 4–bits of direction to <i>hhhh</i> .
Read Analog 8–bits	Send	1	0	0	0	0	b	b	b	Read 8–bits of analog value from <i>bbb</i> and returns result as <i>aaaa aaaa</i> .
	Receive	а	а	а	а	а	а	а	а	
Read Analog 10–bits	Send	1	0	0	0	1	b	b	b	Read 10–bits of analog value from <i>bbb</i> and returns result as <i>aaaa aaaa bb</i> .
	Receive	а	а	а	а	а	а	а	a	
	Receive	b	b	0	0	0	0	0	0	
Read Low Threshold	Send	1	0	0	1	0	b	b	b	Read analog low threshold for <i>bbb</i> and returns result as <i>llll llll</i> .
	Receive	l	l	l	l	l	l	l	l	
Read High Threshold	Send	1	0	0	1	1	b	b	b	Read analog low threshold for <i>bbb</i> and returns result as <i>hhhh hhhh</i> .
	Receive	h	h	h	h	h	h	h	h	
Set Low Threshold	Send	1	0	1	1	0	b	b	b	Set the analog low threshold for <i>bbb</i> to <i>llll llll</i> .
	Send	l	l	l	l	l	l	l	l	
Set High Threshold	Send	1	0	1	1	1	b	b	b	Set the analog low threshold for <i>bbb</i> to <i>hhhh hhhh</i> .
	Send	h	h	h	h	h	h	h	h	
<u>Set Interrupt</u> <u>Commands</u>	Send	1	1	1	1	0	с	с	с	Set Interrupt Command ccc.
Shared Commands	Send	1	1	1	1	1	с	с	с	Execute Shared Command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the IO8 Module is shown below:

IO8 Module (Revision A)

The parts list kept in a separate file $--\underline{io8.ptl}$.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

```
io8 back.png
        The solder side layer.
io8_front.png
        The component side layer.
io8 artwork.png
        The artwork layer.
<u>io8.gbl</u>
        The RS-272X "Gerber" back (solder side) layer.
<u>io8.gtl</u>
        The RS-272X "Gerber" top (component side) layer.
<u>io8.gal</u>
        The RS-272X "Gerber" artwork layer.
<u>io8.drl</u>
        The "Excellon" NC drill file.
<u>io8.tol</u>
        The "Excellon" tool rack file.
```

4. Software

The software for the IO8 is listed below:

 $\frac{io8.ucl}{I}$ The µCL file for IO8. $\frac{io8.asm}{I}$ The assembly file for IO8. $\frac{io8.hex}{I}$ The Intel[®] Hex file. $\frac{io8.lst}{I}$ The listing file for IO8.

5. Issues

Any fabrication issues will be listed here.

Copyright (c) 2005 by Wayne C. Gramlich. All rights reserved.

IO8 Module (Revision A)

A. Appendix A: Parts List

```
# Parts list for IO8 RoboBrix (Rev. A)
#
C1: Capacitor100nF - .1 uF Ceramic Capacitor [Jameco: 25524]
N1: Header1x5.Slave - 1x5 Male Header [5/40 Jameco: 160881]
N2: Header1x5.Debug2 - 1x5 Male Header [5/40 Jameco: 160881]
N3: TerminalStrip2.Power - 2 Junction Terminal Strip [Jameco: 189675]
N4: TerminalStrip8 - 8 Junction Terminal Strip [4 Jameco: 189675]
R1-2: Resistor10K - 10K Ohm 1/4 Watt Resistor [Jameco: 29911]
U1: PIC16F688.IRDistance8 - Microchip PIC16C688 [Digikey: PIC16F688-I/P-ND]
```


B. Appendix B: Artwork Layer

C. Appendix C: Back (Solder Side) Layer

D. Appendix D: Front (Component Side) Layer

