This is the Revision A version of the <u>Light4 RoboBrick</u>. The status of this project is that it has been <u>replaced</u> by the <u>revison B</u> version.

Light4 Robobrick (Revision A)

Table of Contents

This document is also available in <u>PDF</u> format.

- <u>1. Introduction</u>
- <u>2. Programming</u>
- <u>3. Hardware</u>
 - ♦ <u>3.1 Circuit Schematic</u>
 - ◆ <u>3.2 Printed Circuit Board</u>
- <u>4. Software</u>
- <u>5. Issues</u>

1. Introduction

The Light4 RoboBrick can connect to up to 4 Photo Sensors (combined light emitter with photodetector.) The inputs are done using analog to digital converters rather than just binary inputs. There are 4 potentiometers to control the current throught the light emitters and 4 pententionmeters to control the gain of the returned signal.

2. Programming

The Light4 RoboBrick is continuously reading the analog inputs from its four A/D pins. The controlling program can just read the results of the digital conversion, or it can have the result down converted into a single binary bit. Each pin has has a threshold high and threshold low register that is used for the down conversion. Whenever the digital conversion exceeds the high threshold register, the down coversion results in a 1. Whenever the digital conversion is lower than the low threshold register, the down conversion results in a 0. A hysterisis effect can be introduced by having some spread between the high and low threshold values.

After the down coversions to binary bits, the result is 4–bits of binary data. A complement mask can be used to selectively invert individual bits in the 4–bit data.

The Light4 RoboBrick supports <u>RoboBrick Interrupt Protocol</u> for those lines that are being used as inputs. The interrupt pending bit is set whenever the the formula:

 $L\&(\sim I) \mid H\&I \mid R\&(\sim P)\&I \mid F\&P\&(\sim I)$

is non-zero, where:

- I is the current input bits XOR'ed with the complement mask (C)
- P is the previous value of I
- L is the low mask
- H is the high mask
- R is the raising mask
- F is the falling mask

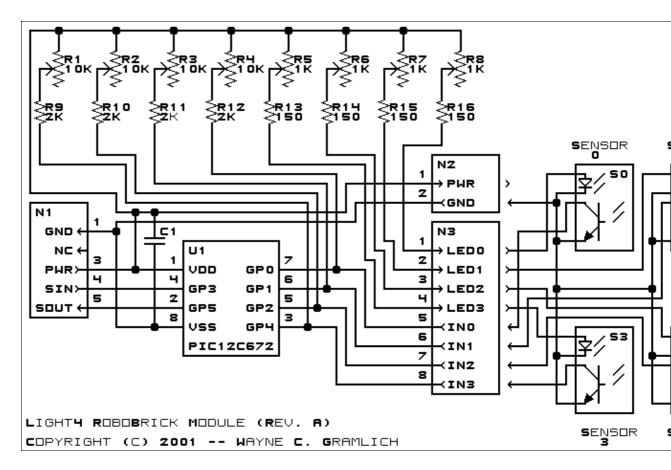
and

- ~ is bit–wise complement
- $\bullet \mid is \ bit-wise \ OR$
- & is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the <u>common shared commands</u> and the <u>shared interrupt commands</u>, the Light4 RoboBrick supports following commands:

Command	Send/			By	te	Val	ue			Discussion
	Receive	7	6	5	4	3	2	1	0	
Read Pin	Send	0	0	0	0	0	0	b	b	Read pin <i>bb</i> and respond with 8–bit value
	Send	v	v	v	v	v	v	v	v	
Read Binary Values	Send	0	0	0	0	0	1	0	0	Return the binary values <i>abcd</i> (after XOR'ing with complement mask)
	Receive	0	0	0	0	а	b	с	d	
Read Raw Binary	Send	0	0	0	0	0	1	0	1	Return the raw binary values <i>abcd</i> (no XOR with complement mask)
	Receive	0	0	0	0	а	b	с	d	
Reset	Send	0	0	0	0	0	1	1	0	Reset everything to zero
Read Complement Mask	Send	0	0	0	0	1	0	0	0	Return and return the complement mask <i>cccc</i>
	Receive	0	0	0	0	с	с	с	с	
Read High Mask	Send	0	0	0	0	1	0	0	1	Return and return the high mask <i>hhhh</i>
	Receive	0	0	0	0	h	h	h	h	
Read Low Mask	Send	0	0	0	0	1	0	1	0	Return and return the high mask <i>llll</i>
	Receive	0	0	0	0	l	l	l	l	
Read Raising Mask	Send	0	0	0	0	1	0	1	1	Return and return the raising mask <i>rrrr</i>
	Receive	0	0	0	0	r	r	r	r	
Read Falling Mask	Send	0	0	0	0	1	1	0	0	Return and return the falling mask <i>ffff</i>
	Receive	0	0	0	0	f	f	f	f	inclum and return the ranning mask jjjj


	Send	0	0	0	1	0	0	b	b	Read and return high threshold for pin bb of
Read High Threshold	Receive	b h	h			ĥ	ĥ		b h	hhhhhhh
Read Low Threshold	Send	0	0	0	1	0	1	b	b	Read and return low threshold for pin <i>bb</i> of <i>lllllll</i>
	Receive	l	l	l	l	l	l	l	l	
Set High Threshold	Send	0	0	0	1	1	0	b	b	Set high threshold for pin <i>bb</i> to <i>hhhhhhh</i>
	Send	h	h	h	h	h	h	h	h	
Set Low Threshold	Send	0	0	0	1	1	1	b	b	Set low threshold for pin <i>bb</i> to <i>llllllll</i>
	Send	l	l	l	l	l	l	l	l	Set low uneshold for pin bb to tituti
Set Complement Mask	Send	0	0	1	0	с	с	с	с	Set complement mask to cccc
Set High Mask	Send	0	1	0	0	h	h	h	h	Set high mask to <i>hhhh</i>
Set Low Mask	Send	0	1	0	1	l	l	l	l	Set low mask to <i>llll</i>
Set Raising Mask	Send	0	1	1	0	r	r	r	r	Set raising mask to rrrr
Set Falling Mask	Send	0	1	1	1	f	f	f	f	Set falling mask to <i>ffff</i>
Read Interrupt Bits	Send	1	1	1	0	1	1	1	1	Return the interrupt pending bit p and the interrupt enable bit e .
	Receive	0	0	0	0	0	0	е	р	
<u>Set Interrupt</u> Commands	Send	1	1	1	1	0	с	с	с	Set Interrupt Command <i>ccc</i> .
Shared Commands	Send	1	1	1	1	1	с	с	с	Execute common shared command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Light4 RoboBrick is shown below:

The parts list kept in a separate file --<u>light4.ptl</u>.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

```
light4 back.png
        The solder side layer.
light4 front.png
        The component side layer.
light4 artwork.png
       The artwork layer.
light4.gbl
        The RS-272X "Gerber" back (solder side) layer.
light4.gtl
        The RS-272X "Gerber" top (component side) layer.
light4.gal
        The RS-272X "Gerber" artwork layer.
light4.drl
        The "Excellon" NC drill file.
light4.tol
        The "Excellon" tool rack file.
```

4. Software

The Light4 software is available as one of:

<u>light4.ucl</u>

The μ CL source file.

<u>light4.asm</u>

The resulting human readable PIC assembly file.

<u>light4.lst</u>

The resulting human readable PIC listing file.

<u>light4.hex</u>

The resulting Intel[®] Hex file that can be fed into a PIC programmer.

The Light4 test software is available as one of:

light4 test.ucl

 The μCL source file.

 light4 test.asm

 The resulting human readable PIC assembly file.

 light4 test.lst

 The resulting human readable PIC listing file.

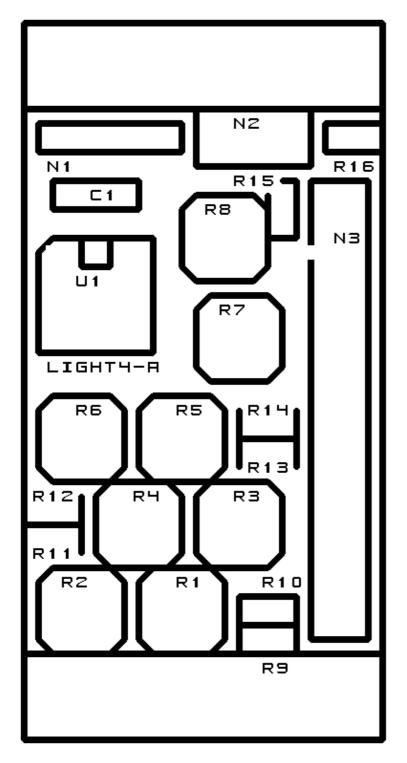
 light4 test.hex

 The resulting Intel[®] Hex file that can be fed into a PIC programmer.

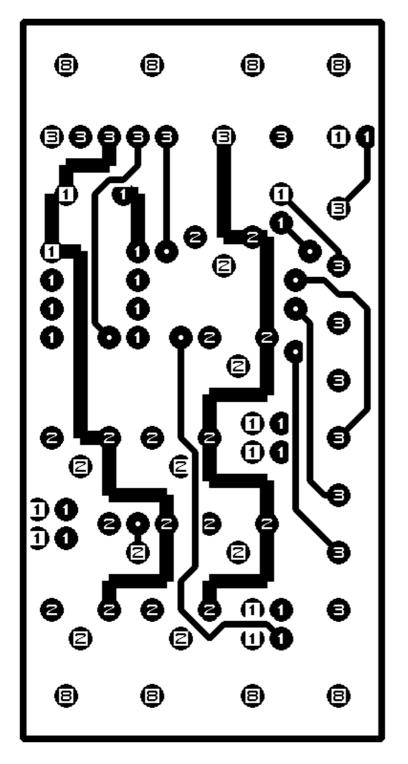
 5. Issues

The following issues have come up:

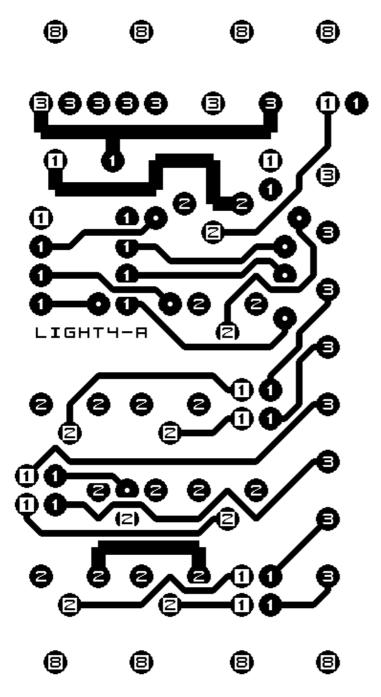
- The holes for N1 are too big (size 3) and should be made smaller (size 2).
- R15 is too close to the terminal strips, move it someplace else.
- Frankly, N2 is too close to the top. Think about moving it somplace else entirely.
- Rethink whether we really need to have all of the trim pots.


Copyright (c) 2001–2002 by Wayne C. Gramlich. All rights reserved.

Light4 RoboBrick (Revision A)


A. Appendix A: Parts List

```
# Parts list for Light4 RoboBrick (Rev. A)
#
C1: Capacitor10pF - 10 pF Ceramic Capacitor [Jameco: 15333]
N1: Header1x5.RBSlave - 1x5 Male Header [5/40 Jameco: 160881]
N2: TerminalStrip2.Light4 - 2 Junction Terminal Strip [Jameco: 189675]
N3: TerminalStrip8.Light4 - 8 Junction Terminal Strip [4 Jameco: 189675]
R1-4: ResistorTrimPot10K.Light4 - 10K Ohm 1/2 Watt Potentiometer[Jameco: 96719]
R5-8: ResistorTrimPot1K.Light4 - 1K Ohm 1/2 Watt Potentiometer[Jameco: 30277]
R13-16: Resistor150.Vertical - 2K Ohm Square 1/2 Watt Potentiometer[Jameco: 30162]
U1: PIC12C672.Light4 - Microchip PIC12C672 [Digikey: PIC12C672-04/P-ND]
```


B. Appendix B: Artwork Layer

D. Appendix D: Front (Component Side) Layer

