
This is the Revision A version of the Motor2 RoboBrick. The status of this project is that is has been replaced
by the revision B version.

Motor2 Robobrick (Revision A)

Table of Contents

This document is also available as a PDF document.

1. Introduction•
2. Programming•
3. Hardware

3.1 Circuit Schematic♦
3.2 Printed Circuit Board♦

•

4. Software•
5. Issues•

1. Introduction

The Motor2 RoboBrick allows for control of up to two small DC motors via pulse width modulation.

A picture of a Motor2−A RoboBrick is shown below:

2. Programming

The Motor2 RoboBrick can control up to two motors called 0 and 1 respectively. Each motor has a power
mode, direction, and speed. The two power modes are pulsed and continous, the two directions are forward
and backward, and the speed is a number between 0 and 255 inclusive. There is one additional variable
associated with each motor called ramp and a few additional variables that are shared between the two motors.

 Motor2 RoboBrick (Revision A)

 Motor2 Robobrick (Revision A) 1

Pulsed mode is standard motor control via pulse width modulation (PWM.) When the speed is 0, no pulses are
sent to the motor. When the speed is 255, the motor is full on. When the speed is 128, 50% duty cycle pulses
are sent to the motor. The direction bit, controls what direction current is pulsed into the motor.

In continuous mode, power is continuously applied either forward or backward through the motor. In
continuous mode, when the speed is 128, 50% duty cycle pulses are sent to the motor, where half the cycle is
sends current forward through the motor and the other half is sends current backward through the motor
(thereby cancelling out and resulting in a rotational speed of 0.) While, continous mode consumes more power
than pulsed mode, it sometimes provides better motor speed control at slow speeds.

The ramp variable is used to slow down the rate at which motor speeds are changed. When the ramp variable
is non−zero, it specifies the rate at which motor speed changes (i.e. the speed ramp.) The ramp rate is
measured in ticks (1/3 of a bit time at 2400 baud, or 1/7200, or 138µS. A ramp rate of 1, means the pulse
widths will be changed every 138µS. A ramp rate of 100 means the pulse widths will be changed every 100 ×
138µS or every 13.8mS. This allows the user to slowly speed up and slow down the motor. Please note, that
ramp only applies to speed, changing the motor direction is immediate. (Sorry!)

For safety reasons, you might want the motors to shut off if the controlling program crashes. This is
accomplished with a variable called the failsafe delay variable which is shared between both motors. When
the failsafe delay variable is set to a non−zero value, it causes another variable called the failsafe counter to be
initialized to the same value. Every 256 ticks (= 256 × 138µS = 35.5mS), the failsafe counter is decremented.
If the failsafe counter ever decrements to 0, it immediately turns off both motors without any ramping. Every
time a speed command is sent to the Motor2 RoboBrick, the failsafe counter is reinitialed to contain the
failsafe delay variable. Thus, by occasionally sending commands that set the speed of either motor, the
failsafe counter can be kept non−zero. Alternatively, there is a command that just reinitializes the failsafe
counter without affecting the speed. The maximum amount of time between commands that reset the failsafe
counter is 255 × 35.5mS or approximately 9 seconds. If the controlling program crashes, it will stop sending
commands to the Motor2 RoboBrick and eventually, the failsafe counter will decrement to zero and stop both
motors. There is yet a third variable called the failsafe error counter that is incremented each time a failsafe
shut down occurs. The failsafe error counter can be read with yet another command. Lastly, both motors can
be restarted by simply sending another command that sets the speed of either motor.

Finally, there is one other variable that is shared between the two motors called the prescaler. The prescaler is
3−bits wide and controls duty cycle width of the pulses are sent to the motor. The table below summarizes the
prescaler to duty cycle relationship:

Prescaler Duty Cycle Width

000 .5µS

001 1µS

010 2µS

011 4µS

100 8µS

101 16µS

110 32µS

111 64µS

The Motor2 commands are summarized in the table below:

Command Byte Value Discussion

 Motor2 RoboBrick (Revision A)

 Motor2 Robobrick (Revision A) 2

Send/
Receive

7 6 5 4 3 2 1 0

Set Quick Send 0 0 h h h h d m
Set motor m speed to hhhh hhhh
and direction to d (0=forward,
1=backward).

Set Low Send 0 1 l l l l d m
Set low order 4 bits of motor m
speed to ll and direction to d
(0=forward, 1=backward).

Set Ramp
Send 1 0 0 0 0 0 0 m Set the ramp for motor m to

rrrrrrrr (00000000=no ramp
(default)).Send r r r r r r r r

Set Failsafe
Send 1 0 0 0 0 0 1 0 Set the failsafe delay variable to

ffffffff (00000000=off (default)).Send f f f f f f f f

Reset Failsafe Send 1 0 0 0 0 0 1 1
Reset the failsafe counter to the
failsafe delay variable.

Set Speed
Send 1 0 0 0 0 1 d m Set motor m to speed ssssssss and

direction to d.Send s s s s s s s s

Set Mode Send 1 0 0 0 1 0 x m
Set motor m mode to x (0=pulsed
(default), 1=continuous).

Set Direction Send 1 0 0 0 1 1 d m
Set motor m direction to d
(0=forward (default), 1=reverse).

Set Prescaler Send 1 0 0 1 0 p p p
Set prescaler to ppp (000=fast,
111=slow (default)).

Read Failsafe
Send 1 0 0 1 1 0 0 0 Read the return the failsafe delay

variable ffffffff.Receive f f f f f f f f

Read Prescaler
Send 1 0 0 1 1 0 0 1

Read the return the prescaler ppp.
Receive 0 0 0 0 0 p p p

Read Speed
Send 1 0 0 1 1 0 1 m Read the return the speed ssssssss

for motor m.Receive s s s s s s s s

Read
Mode/Direction

Send 1 0 0 1 1 1 0 m Read the mode x (0=pulsed,
1=continuous) and direction d
(0=forward, 1=reverse) for motor
m.

Receive 0 0 0 0 0 0 x d

Read Ramp
Send 1 0 0 1 1 1 1 m Read and return the ramp rrrrrrrr

for motor m.Receive r r r r r r r r

Read Failsafe Errors
Send 1 0 1 0 0 0 0 0 Read and return the failsafe error

counter eeeeeeee. Reset the
counter.Receive e e e e e e e e

Read Failsafe
Counter

Send 1 0 1 0 0 0 0 1 Read and return the failsafe
counter cccccccc.Receive c c c c c c c c

Read Actual Speed
Send 1 0 1 0 0 0 1 m Read and return the actual speed

for motor mReceive e e e e e e e e

Reset Send 1 0 1 0 0 1 0 0 Reset the entire motor controller

Shared CommandsSend 1 1 1 1 1 c c c Execute shared command ccc.

 Motor2 RoboBrick (Revision A)

 Motor2 Robobrick (Revision A) 3

On power up, the Motor2 RoboBrick sets all variables to zero. The motor modes default to pulsed forward.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Motor2 RoboBrick is shown below:

The parts list kept in a separate file −− motor2.ptl.

3.2 Printed Circuit Board

The printed circuit files are listed below:

motor2_back.png
The solder side layer.

motor2_front.png
The component side layer.

motor2_artwork.png
The artwork layer.

motor2.gbl
The RS−274X "Gerber" back (solder side) layer.

motor2.gtl
The RS−274X "Gerber" top (component side) layer.

motor2.gal
The RS−274X "Gerber" artwork layer.

 Motor2 RoboBrick (Revision A)

 3. Hardware 4

motor2.drl
The "Excellon" NC drill file.

motor2.tol
The "Excellon" NC drill rack file.

4. Software

The Motor2 software is available as one of:

motor2.ucl
The µCL source file.

motor2.asm
The resulting human readable PIC assembly file.

motor2.lst
The resulting human readable PIC listing file.

motor2.hex
The resulting Intel® Hex file that can be fed into a PIC12C5xx programmer.

The Motor2 test suite is available as one of:

motor2_test.ucl
The µCL source file.

motor2_test.asm
The resulting human readable PIC assembly file.

motor2_test.lst
The resulting human readable PIC listing file.

motor2_test.hex
The resulting Intel® Hex file that can be fed into a PIC16F84 programmer.

5. Issues

The following issues have come up:

The terminal strip holes are too small.•
The L293D is too close to the terminal strip. Move it to the left by .05"•
Consider swapping the L293D and the PIC so that the heat fins on the L293D do not interfere with the
terminal strip.

•

Switch over to a 5−wire connector.•
Use a PIC16C505 so that the controller can drive the enable pins as well.•
Think about adding a fuse.•

Copyright (c) 2000−2002 by Wayne C. Gramlich. All rights reserved.

 Motor2 RoboBrick (Revision A)

 4. Software 5

 Motor2 RoboBrick (Revision A)

 4. Software 6

A. Appendix A: Parts List

Parts list for Motor2 RoboBrick (Rev. A)
#
C1: Capacitor10pF − 10 pF Ceramic Capacitor [Jameco: 15333]
C2: Capacitor2200uF − 2200 uF 6.3V Electrolytic Capacitor [Jameco: 133145]
D1: 1N5400 − 1N5400 Diode [Jameco: 77075]
J1: Header1x3.Motor2 − 1x3 Male Header [3/40 Jameco: 160881]
N1: RJ11Female4_4.RBSlave − Female RJ11 (4−4) Phone Jack [Digikey: A9071−ND]
N2: TerminalStrip6.Motor2 − 6 terminal terminal strip [2 Jameco: 189667]
N3: TerminalStrip2.Motor2 − 2 terminal terminal strip [Jameco: 189675]
U1: PIC12C509.Motor2 − Microchip PIC12C509 [Digikey: PIC12C509A−04/P−ND]
U2: L293D − Dual H−Bridge [Digikey: 296−9518−5−ND]

 Motor2 RoboBrick (Revision A)

A. Appendix A: Parts List 7

B. Appendix B: Artwork Layer

 Motor2 RoboBrick (Revision A)

B. Appendix B: Artwork Layer 8

C. Appendix C: Back (Solder Side) Layer

 Motor2 RoboBrick (Revision A)

C. Appendix C: Back (Solder Side) Layer 9

D. Appendix D: Front (Component Side) Layer

 Motor2 RoboBrick (Revision A)

D. Appendix D: Front (Component Side) Layer 10

