
How RoboBricks
Were Developed

Wayne C. Gramlich

Wednesday, June 26, 2002

 How RoboBricks Were Developed 1

Problem
Building robots is hard •
Mechanical, electrical, and software •
Real−time programming is hard •

 Problem 2

Solution
Use modules •
Off load real−time to dedicated µC •
Simplify top level programming! •
Simplify electronics, too! •

 Solution 3

History
Use '509's as hubs •
Processor non−integrated hub (RJ11) •
Processor combined hub (1×5 Header) •

 History 4

Final Architecture
4−wire (1×5 header) 0, +5, TTL up/down •
Asynch. 8N1 2400 baud •
Hierarchical master/slave •
Processor neutral •
Interrupt mode •

 Final Architecture 5

PIC's

Part
#

Pins ROM RAM IO A/D SerI2C
Cost
(25)

'509 8 1K 41 6 0 0 0 $1.01

'505 14 1K 72 12 0 0 0 $1.26

'672 8 2K 128 6 4 0 0 $1.94

'F84 18 1K 68 13 0 0 0 $3.94

'F628 18 2K 224 16 0 1 0 $2.21

'F876 28 8K 368 22 5 1 1 $5.49

 PIC's 6

PIC Limitations
'509, '505, '672 have no interrupts •
'509, '505, '672 have 2 level stack •
1K ROM is not a lot •
Code and data banks are gnarly •
Only '628 and '876 have USART •

 PIC Limitations 7

µCL
µCL = Micro Controller Language •
C−like •
Data types: bit, byte, string, byte array •
Does code/data banking (barely) •
Written in 12K lines of Tcl/Tk (ugh!) •
Excellent code generation •
Counts instructions! •

 µCL 8

Code Layout
Main •
Get_Byte •
Send_Byte •
Delay •
Reset (Optional) •

 Code Layout 9

Get_Byte
procedure get_byte {
 arguments_none
 returns byte
 variable count byte
 variable char byte

 while (serial_in) {
 call delay()
 }

 call delay()
 call delay()
 call delay()
 char := 0
 count_down count 8 {
 call delay()
 char := char >> 1
 if (serial_in) {
 char@7 := 1
 }
 call delay()
 call delay()
 nop extra_instructions_per_bit − 7
 }

 Get_Byte 10

 call delay()
 call delay()
 return char
}

 How RoboBricks Were Developed

 Get_Byte 11

Get_Byte Assembly
get_byte:
get_byte__464while__continue:
 btfss serial_in__byte,serial_in__bit
 goto get_byte__464while__break
 call delay
 goto get_byte__464while__continue

get_byte__464while__break:
 call delay
 call delay
 call delay
 clrf get_byte__char

 movlw 8
 movwf get_byte__count
get_byte__483_loop:
 call delay
 bcf c___byte,c___bit
 rrf get_byte__char,f
 btfsc serial_in__byte,serial_in__bit
 bsf get_byte__char,7
 call delay
 call delay
 decfsz get_byte__count,f

 Get_Byte Assembly 12

 goto get_byte__483_loop

get_byte__483_done:
 call delay
 call delay
 movf get_byte__char,w
 movwf get_byte__0return__byte
 retlw 0

 How RoboBricks Were Developed

 Get_Byte Assembly 13

Delay Code
procedure delay {
 arguments_none
 returns_nothing
 uniform_delay delay_instructions
 variable counter byte
 variable temp0 byte
 variable temp1 byte

 watch_dog_reset
 if (ir_in) {
 if (counter != 0) {
 # We've got a pulse:
 if (counter >= 12) {
 # We've got a start:
 byte0 := temp0
 byte1 := temp1
 temp0 := 0
 temp1 := 0
 } else {
 # Shift 10 bits:
 temp0 := temp0 >> 1
 temp0@7 := temp1@0
 temp1 := temp1 >> 1
 if (counter >= 6) {

 Delay Code 14

 temp1@3 := 1
 }
 }
 }
 counter := 0
 } else {
 counter := counter + 1
 }
}

 How RoboBricks Were Developed

 Delay Code 15

Main Code
procedure main{
 arguments_none
 returns_never
 variable command byte

 call reset()
 loop_forever {
 command := get_byte()
 switch (command >> 6) {
 case 0 {
 switch ((command >> 3) & 7) {
 case 0 {
 switch (command & 7) {
 case 0 {
 # Command 0000 0000:
 }
 #...
 case 7 {
 # Command 0000 0111:
 }
 }
 }
 #...
 case 7 {

 Main Code 16

 #
 }
 }
 }
 default 3 {
 #...
 }
 }
 }
}

 How RoboBricks Were Developed

 Main Code 17

Shared Commands
Glitch (0xFF = Increment; 0xFE = Read) •
ID (0xFD = Reset; 0xFC = Read) •
Clock adjust (0xFB = Pulse, 0xFA =
Read)

•

Clock adjust (0xF9 = Incr, 0xF8 = Decr.) •
4/6−bits of clock adjust ('509/'509A) •

 Shared Commands 18

Id
Header (8−bytes) •
Unique ID (16−bytes of random bits) •
Brick String (variable length) •
Vendor (variable length) •

 Id 19

Interrupt
Initialize •
Enable •
Trigger •
Detect •
Respond •

 Interrupt 20

Debugging
`Crash and burn' debugging •
Erasing using UV is a pain •
Use unused pins for `heartbeat' signals •
Buggy µCL compiler did not help •
Code/data bank switching is gnarly •
Should have invested in an ICE (Big $$$) •
Wrote an emulator to help debug µCL
compiler

•

Wrote a test suite for µCL compiler •
Tcl/Tk is a bad choice for writing a
compiler

•

 Debugging 21

Boards
Used rapid prototype services (APC,
Olimex)

•

Gerber/excellon files really work •
Used private PCB layout software
(HobECAD)

•

Solder bridges happen when no solder
mask

•

PCB milling was close •
Constantly undersizing holes •
Patching boards was pretty easy •

 Boards 22

Web Site
Very successful •
http://web.gramlich.net/projects/robobricks/ •
24/7/365 availability •
Steady trickle of interest via search
engines

•

Added PDF files for printer friendly •

 Web Site 23

Harness
Have harness board •
Have manual test command interpreter •
Each board has a test suite •
Each RoboBrick has internal state
commands

•

 Harness 24

Lessons
Weekly meetings made a big difference •
Invest in an ICE •
Fewer boards sooner better than many
boards later

•

Way too much preselling •
Moore's Law ('F628, AVR's, etc.) •
Servo board was very hard •
Don't write compilers in Tcl/Tk •

 Lessons 25

Current Status
Taking orders for 6 boards tonight •
(AnalogIn4, BS2Hub8, InOut10, Light4,
Servo4, SonarDT1)

•

~$35 for 6 boards •
~$35 for parts •
~$25 for SRF04 •
Everything `at cost' •
Full support from Wayne and Bill •
More opportunities coming •

 Current Status 26

Future
More boards; 6 new ones every few
months

•

Newer processors •
Surface mount is getting hard to avoid •
Lower prices as volumes ramp up •
More clubs: TCRG, SRS, DPRG, TRCY,
RSA, ...

•

Magazine article (Circuit Cellar? Nuts &
Volts?)

•

Book? •
License deal? Acroname? Robot Store?
Sombody else?

•

World domination!!! •

 Future 27

