
RoboBricks Tutoral



Table of Contents
RoboBrick® Tutorial..........................................................................................................................................1

Table of Contents:....................................................................................................................................1
Introduction..............................................................................................................................................1
RoboBrick Philosophy.............................................................................................................................1
Technical Information..............................................................................................................................1
Building a RoboBrick System.................................................................................................................1

Introduction.........................................................................................................................................................2
Why RoboBricks?....................................................................................................................................2
About This Manual..................................................................................................................................2
RoboBrick Philosophy.............................................................................................................................2
Technical Information..............................................................................................................................3
Building a RoboBrick System.................................................................................................................4

New Page 1

i



RoboBrick ® Tutorial

Table of Contents:

IntroductionI. 

RoboBrick PhilosophyII. 

Technical InformationIII. 

Building a RoboBrick SystemIV. 

Bump SensorsA. 

ServosB. 

Edge DetectorsC. 

Object DetectorD. 

RoboBrick® Tutorial 1



Introduction

Why RoboBricks?

One of the challenges confronting the robotics hobbyist is that  programming complexity does not rise linearly
with each newly added sensor or  behavior.   Programming a robot with bump sensors and IR detectors to
behave as a line follower is relatively simple.  But add several more sensors or try to do something more
interesting than just following a line and the programming challenges quickly become more than the average
hobbyist can handle.  This rapid rise in programming complexity associated with more advanced autonomous
robots may be the single largest stumbling block to the advancement of this hobby.

RoboBrick technology offers one solution to this problem.  By putting the "housekeeping" programs for each
sensor or task in a dedicated  RoboBrick, the top level "behavior" program becomes considerably easier to
write.  Those with very little programming experience can now concentrate on adding more interesting levels
of behavior to their robots without being limited by their lack of programming experience.  RoboBrick
technology promises to expand the boundaries that presently limit the robotics hobbyist from developing
robots with more complex and interesting behaviors.

About This Manual

This manual is designed for novice RoboBrick users to help them implement their robot inspirations using
RoboBrick technology.  The manual focuses on a "hands−on" approach to the implementation and
programming of certain Brick modules specifically selected because they are likely be found in most robot
designs.  The technical information presented here is introductory in nature and therefore does not go into the
level detail that is available at the Official RoboBrick Website.  Once the user becomes more familiar with
RoboBrick technology, the Official RoboBrick Website should become his/her resource of choice.

RoboBrick Philosophy

Make programming easier

Think of RoboBricks as an implementation of distributed programming.  Each RoboBrick module contains a
PIC microprocessor pre−programmed with the serial communications protocol, Brick identification data and
all of the code necessary to perform each of the functions for which the Brick is designed.  Consequently, the
user is relieved of the burden of writing this difficult code for himself and can now turn his attention to
developing a top level code that is significantly less complicated to write.

Reduce the need for circuit building

A side benefit derived from using RoboBricks is that the user is relieved of the chore of building the circuitry
necessary to accomplish the particular task at hand.  This reduces the chance of design and construction errors
and eliminates the frustrations and delays associated with troubleshooting. RoboBricks therefore can be
viewed as an approach to "plug and play" technology.  The circuit  diagrams for each of the Brick modules are
available on the Official RoboBrick Website. 

Introduction 2

http://web.gramlich.net/projects/robobricks/index.html
http://web.gramlich.net/projects/robobricks/index.html
http://web.gramlich.net/projects/robobricks/index.html


Be Physically compatible with Legos

The typical RoboBrick module is built on a rectangular circuit board having a width of 1.25 inches and a
length of 2.50 inches.   The widths and lengths of non−standard RoboBricks are always fabricated in multiples
of 1.25 inches.  Along its width, each RoboBrick board contains holes sized and spaced to interlock with
Lego's standard plastic brick pegs thus allowing Lego creations to make use of the powerful technology
available in RoboBricks.

Provide open source code

The source code for each RoboBrick, is available at the Official RoboBrick Website.   The source code for
each Brick is written in µCL (pronounced like "uncle without the "n"), a language developed specifically for
RoboBricks and other robotics applications.  More information is available at  The µCL Project.

Be Microprocessor independent

While three different RoboBrick Hubs, each using a different microprocessor, are included in the RoboBrick
set, most any other microprocessor will work equally as well.  All that is required is that the user follow the
simple electrical specifications and communications protocol.

Technical Information

Inter−Brick communication

A RoboBrick system consists of a single "Hub or Master" brick connected to one or more "Slave" bricks via
individual 4−line cables.  The cables provide +5 volt regulated DC power and ground  from the Hub to each
Slave along with a two separate lines for sending and receiving data.  The number of Slave bricks that can be
connected is limited by the Hub brick chosen.  For example, the BS2Hub8 can control up to eight Slave bricks
while the OOPicHub15 can control up to 15 Slave bricks (the number of slave bricks that any chosen
microprocessor can support is approximately equal to the total number of in/out ports available divided by
two).  Asynchronous data transfer is done on a two line system where the lines are connected to specific
input/output ports on the Hub and Slave microprocessors.  Data is sent on one line and received on another;
the Hub transmit line is also the Slave Receive line and the Hub receive line is the Slave transmit line.  To
address a selected Slave Brick one only needs to know the two microprocessor ports  ("sockets" in RoboBrick
speak) where the Slave is connected to the Hub's microprocessor.  Communication between the Master and a
Slave is always initiated by the Master; the Slave sends data to the Master only when the Master instructs. 
For example, if a Servo4 Slave is in use, the Hub might send a new speed to the Servo4 but not ask for any
report back.  The Servo4 Slave would execute the new command without a response.  On the other hand, the
Hub might request that the Servo4 Brick report its current speed argument in which case, the Brick will
respond with the appropriate information.  Communication is asynchronous; it proceeds first from the Master
to the Slave and then from the Slave back to the Master using asynchronous, 8N1 protocol (i.e. 1 start bit, 8
data bits, no parity, and 1 stop bit.) at a 2400 baud rate.

Programming tables

Each Slave RoboBrick is designed with a specific function in mind.  Every Slave Brick offers the user a broad
variety of choices about how to employ its various functions and how to extract information about its status. 
To assist the user in taking full advantage of all of the functions available on a particular Slave brick, each
Brick has its own programming table that lists each of the functions available and the respective command

New Page 1

RoboBrick Philosophy 3

http://web.gramlich.net/projects/robobricks/index.html
http://gramlich.net/projects/ucl/index.html
http://web.gramlich.net/projects/robobricks/oopichub15/rev_a/index.html


byte that must be sent to the Slave to achieve it.  For example, the LED10 Slave brick's programming table
shows that this Brick has 13 commands available, 9 that control how it will function and 4 that will provide
information about its status. Each of these 13 functions has a command with a unique byte value associated
with it.  In some cases, function commands to the slave brick will need a response from the Slave back to the
Hub and in other cases it will not.  When a response is required as part of a function command, the Slave will
respond automatically without any additional action on the part of the user.

Interrrupt protocols

At 2400 baud, it can take a while to poll several input RoboBricks to see if anything interesting has occurred.
Sometimes RoboBricks are sensing inputs that need a response that is faster than strict polling can provide.
For example, bumper detectors. To support low latency, many RoboBricks support the RoboBrick Interrupt
Protocol.

The RoboBrick Interrupt Protocol is very simple. Each RoboBrick that supports the protocol has two bits −−
the interrupt pending bit and the interrupt enable bit. The interrupt pending bit is set by the RoboBrick when a
pre−specified user event has occurred. The interrupt enable bit is set to allow the interrupt to occur.

In this example, we will not be using the Interrupt feature but you can read more about it on the Official
RoboBrick Website under Interrupts.

Types of commands

There are three basic commands available for each RoboBrick Slave Module: Shared Commands, Information
Commands and Function Commands.  Shared Commands are commands common to every RoboBrick. 
These commands are used to get administrative information about the Brick such as its serial number, model
and version number, etc.  Information Commands are used to obtain the current operating status of a Slave
Brick and might include, as an example,  the status of each sensor connected to the Brick or the commands the
Brick is sending to a connected device.  Function Commands are those sent to the Slave to cause it to perform
some action such as, for example, resetting the speed of a servo, changing the blink rate of an LED, turning a
connected device on or off,  etc. 

Building a RoboBrick System

In this section, we will use RoboBricks to accomodate the construction of a mobile, autonomous, tabletop
robot that possesses the following four behaviors:

Able to randomly wander about its tabletop environment1. 
Capable of avoiding objects in its path2. 
Capable of escaping from unexpected collisions with an undetected objects3. 
Capable of detecting and remaining clear of the table's edge 4. 

Since the purpose of this exercise is to learn how to use RoboBricks, we will focus on building and
programming the RoboBrick system and ignore both the assembly of the robot platform and the details of how
the Bricks attach to it.  Remember that RoboBricks are designed to fit onto most any robot platform and they
can be affixed in whatever manner the user decides.  We will use servos, modified for continuous rotation, for
locomotion; microswitches as bump sensors to detect collisions; a Devantech sonar to detect objects to be
avoided; and four downward looking IR detectors to detect the table's edge. With that in mind, we have
selected the following RoboBricks for our system: a BS2Hub8 to control the following four Slave bricks:
Servo4, InOut10,  SonarDT1, AnalogIn4 and Light4 .  We will start by writing a small stand alone program to

New Page 1

Technical Information 4

http://web.gramlich.net/projects/robobricks/led10/rev_c/index.html
http://web.gramlich.net/projects/robobricks/led10/rev_c/index.html
http://web.gramlich.net/projects/robobricks/index.html
http://web.gramlich.net/projects/robobricks/index.html
http://web.gramlich.net/projects/robobricks/specifications.html#Interrupts
http://web.gramlich.net/projects/robobricks/specifications.html#Software_Protocol
http://web.gramlich.net/projects/robobricks/bs2hub8/rev_b/index.html
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html
http://web.gramlich.net/projects/robobricks/inout10/rev_b/index.html
http://web.gramlich.net/projects/robobricks/sonardt1/rev_a/index.html
http://www.gramlich.net/projects/robobricks/analogin4/rev_c/index.html
http://http://www.gramlich.net/projects/robobricks/light4/rev_b/index.html


test each of the RoboBricks chosen together with whatever apparatus is attached.  As a final step, we will use
the essential parts of each of the test programs to write a Table Top Robot program.  All of these programs
can be downloaded at  XXXX

The Bump Sensors

We will use two microswitches for our bump sensors and attach them to the InOut10 brick.  This RoboBrick
provides a +5 volt regulated power and ground connection and the ability to input or output up to 10 bits of
data.  It is perfectly suited to implement our bump sensors.  We can configure each microswitch so that it
responds with an active high or active low output whenever it is closed on the event of a collision.  Arbitrarily,
we will elect to configure the switch to respond with an active high output upon a collision.  We'll use
Terminal N3 (see below) to connect our bump sensors with the following pin assignments: pin 1 = +5V; pin 2
= left bump sensor; pin 3 = right bump sensor; pin 4 = ground.

Bump Sensor Construction

New Page 1

Building a RoboBrick System 5

http://web.gramlich.net/projects/robobricks/inout10/rev_b/index.html


Connecting a bump sensor to the InOut10 RoboBrick is quite simple.  In this example we will connect only
the left microswitch to the InOut10 brick so that each of the connections can be plainly seen.  To add the right
microsensor, follow the same instructions except use Terminal Pin 2 (input bit 9) instead of Terminal Pin 3
(input bit 8).  The left and right microsensors share all other connections.

To begin, connect a 1 K ohm resister between Terminal Pins 3 and 4 of Terminal Block N3 as shown
in Fig. 1 above.  Terminal Pin 3 is input bit 8 and Terminal Pin 4 is Ground. 

1. 

New Page 1

Building a RoboBrick System 6



Make sure that the wires leading from the microswitch are shorted together when the microswitch
lever is pressed..

2. 

Next, connect the microswitch between Terminal Pin 3 and Terminal Pin 1 (+5 v) of N3 and then
plug−in the 4−wire cable as shown in Fig. 2.  

3. 

Connect the other end of the 4−wire cable to the BS2Hub8 at socket N14. 

Programming Chart Excerpts

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Inputs Low
Send 0 0 0 0 0 0 0 0 Return low order 5−bits of input iiiii (after XOR'ing with

complement mask)Receive 0 0 0 i i i i i

Read Inputs High
Send 0 0 0 0 0 0 0 1 Return high order 5−bits of input IIIII (after XOR'ing

with complement mask)Receive 0 0 0 I I I I I

Read Complement
Mask Low

Send 0 0 0 0 0 0 1 0
Return low order 5−bits of complement mask ccccc

Bump Sensor Software

To get the status of the bump sensor we need only to write a short procedure.  The first step is to determine
what command the BS2Hub8 needs to send to the InOut10 brick to get the status of its port connections where
the bump sensors are connected (pins 8 and 9).  Checking the  InOut10 Programming Table  we see that the
command Read Inputs High will allow us to read the five high order connections (bits 5 − 9) if we send a
byte  value of 1 to the InOut10 brick.  Once the InOut10 receives the Read Inputs High command, it will
respond by sending back a byte that represents the values appearing on the high order five bits.   The value
sent will be saved in the variable "inout " and since we will set the complement bit to zero, the complementing
done automatically by the InOut10 Brick will not change its value (setting the complement byte equal to $ff
would have converted an active low output to an active high or alternatively and active high output to an
active low − another nice feature to have available).

PSEUDO CODE

        initialize variables
        loop
                send read command
                receive result
                process result
        loop end

BASIC STAMP II −  TEST CODE

'Initializations
baud_code con 396               'BS2 uses 396;BS2SX uses 1021 for 2400 baud
        dirs = %1111111101111111        'Set the BS2 bit directions (0 = input; 1 = output)
        inout var byte                  'Define a variable to hold the bump sensor information
        inout10_in con 8                'Serial data in on the BS2Hub8 at socket N1 (stamp pin 8)
        inout10_out con 9               'Serial data out on the BS2Hub8 at socket N1 (stamp pin 9)
        high inout10_out                'This prepares the output data line for the start of serial com 
        sensor_Mask con $18             'Mask off all but the bump sensor bits

Main:
        gosub Bump
        inout, [Forward, Escape_Left, Escape_Right, Escape_Left]        'Branch arguments are directions to the Servos
        goto Main                                                                                                                       'that will be installed next

New Page 1

Building a RoboBrick System 7

http://web.gramlich.net/projects/robobricks/inout10/rev_b/index.html#Programming


'Bump Sensor Subprocedures

Bump:
        serout inout10_out, baud_code, [1]      ' Read Inputs High − Send 
        serin inout10_in, baud_code, [inout]    ' Read Inputs High − Receive (high order 5 bits in variable "inout")
        inout = inout & sensor_mask             'Mask off all but the bump sensor bits
        inout = inout >> 3                      'Shift Bump Sensor bits to positions 0 and 1
        return

Foward:
        debug "No Bump − Going Forward",cr
        return

EscapeLeft:
        debug "Bumped on Right − Escaping Left", cr
        return

EscapeRight:
        debug "Bumped on Left − Escaping Right",cr
        return  

The Servos

The robot we are building will use differential steering provided by two continuously rotating servo motors. 
Modifying a standard servo so that it can rotate continuously will not be covered here but information on
making this modification can be found at Servo Mod on the Seattle Robotics Society website.  We will
program each servo with four responses: stop, full reverse, full forward and slow forward.   By combining  the
responses appearing on each of the two servo motors, we can create a variety of robot motions: halt, go
forward, go in reverse, turn left, turn right, pivot left and pivot right.  The Servo4 brick that we will be using is
dedicated exclusively to servo operation and it can accommodate up to four individual servos each of which
can be independently controlled by the user. 

The Servo4 brick provides control the speed/direction of each servos'  with 8−bits of resolution.  For example,
the Set High command sets the high order 4−bits and the Set Low command sets the low order 4−bits.  Now
keeping in mind that a Servo4 brick can control up to 4 servos, let's take a look, for a moment, at the Servo4
Programming Table to see how to address a specific servo.  To set all of the high order bits high on servo 1
(servos are numbered from 0 − 3), the table tells us that the Set High command byte we must send to the
Servo4 board is 00111101 = $3D.  The last two bits of this command byte are used to signal which servo is
the one designated to receive the command.

Servo4 Schematic

New Page 1

Building a RoboBrick System 8

http://www.seattlerobotics.org/guide/servohack.html
http://www.seattlerobotics.org/
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming


The Servo4 RoboBrick will accomodate 4 servo motors but unlike most of the other RoboBricks, the servos
are not powered by the selected HUB.  A separate power source connection is provided on the Brick.  Each
servo plugs directly  into a 3−pin header with pin configurations as shown in the diagram above.   We will
plug our the left  servo into header 0 and the right servo into header 1.  The last thing to do is connect a 4−line
cable from the Servo4 brick to the BS2Hub8 brick at socket N2 (input − pin 10, output − pin 11).  The
following table lists a number of available servos together with lead and color identification to help insure that
proper connection is  made to the  Servo4 brick. 

Programming Chart Excerpts

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Set High Send 0 0 h h h h s s
Set high order 4 bits of servo ss to hhhh and set the remaining 4
low order bits to zero

Set Low Send 0 1 l l l l s s Set the low order 4 bits of servo ss position to llll.

Increment Send 1 0 0 i i i s s Add iii to the position of servo ss.

Decrement Send 1 0 1 d d d s s Subtract ddd from the position of servo ss.

Read
Enable

Send 1 1 0 1 0 1 s s Return the enable bit e for servo ss.

Set Enables
Send 1 1 0 1 1 0 0 1

Set enable flags for all four servos to eeee.

New Page 1

Building a RoboBrick System 9

http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html


Send 0 0 0 0 e e e e
Servo4 Software

We will need to create separate procedures to translate the individual servo responses into each of the desired
robot motions listed above and, in addition, we will need to add a few lines of code in the Initializations
section to tie everything together.  A program note: servos can be either enabled or disabled (see the Servo4
Programming Table) so we must insert some code to insure that our two servos are enabled for use. The Set
Enables command requires two command bytes to be sent consecutively.  With these two command bytes,
each of the four servos can be individually enabled or disabled and therefore 16 different configurations are
possible when all four servos are considered together.

PSEUDO CODE

PROGRAM CODE

Note that the most of the code consists of repeatedly sending  simple command bytes to the servo board. 
Conspicuously absent are the servo timing loops and the servo pulse width  specifications.  These are handled
by the Servo4 brick so that the user does not need to concern himself with the complication of those details. 
We are at liberty therefore to ignore the servos so long as we are not changing either their speed or direction.

'Initializations
        baud_code con 396
        dirs %1111110111111111
        servo4_in con 10                        'Serial data "in" on the BS2Hub8 at socket N2 (stamp pin 10)
        servo4_out con 11                       'Serial data "out" on the BS2Hub8 at socket N2 (stamp pin 11)
        high servo4_out                         'This prepares the output data line to start serial communication
        enable_a con $d9                        'Set Enables command 
        enable_b con $03                        'bytes to enable servos 0 and 1 and disable servos 2 and 3.
        serout servo4_out, baud_code, [enable_a] 'First enable all servos command
        serout servo4_out, baud_code, [enable_b] 'Second enable all servos command

'Servo direction assignments
        l_halt_hi con $24                       'The numberical values for each motor response will depend on the characteristics of the
        l_halt_lo con $44                       'specific servos used
        r_halt_hi con $25
        r_halt_lo con $45
        l_fwd     con $3d                       'When the servo high bits are all set to 1, that is full forward or full reverse, you can generally
        r_fwd     con $00                       'ignore any value set on the servo's low bits
        l_bak     con $01
        r_bak     con $3c
        l_slo     con $24
        r_slo     con $25

'Servo4 subprocedures
Halt:
        serout servo4_out, baud_code, [l_halt_hi]
        serout servo4_out, baud_code, [r_halt_lo]
        serout servo4_out, baud_code, [l_halt_hi]
        serout servo4_out, baud_code, [r_halt_lo]
        return

Forward:
        serout servo4_out, baud_code, [l_fwd]
        serout servo4_out, baud_code, [r_fwd]
        return

Backup:
        serout servo4_out, baud_code, [l_bak]

New Page 1

Building a RoboBrick System 10

http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming
http://web.gramlich.net/projects/robobricks/servo4/rev_c/index.html#Programming


        serout servo4_out, baud_code, [r_bak]
        return

L_Turn:
        serout servo4_out, baud_code, [l_slo]
        serout servo4_out, baud_code, [r_fwd]
        return

R_Turn:
        serout servo4_out, baud_code, [l_fwd]
        serout servo4_out, baud_code, [r_slo_hi]
        serout servo4_out, baud_code, [r_slo_lo]
        return

L_Pivot:
        serout servo4_out, baud_code, [l_halt]
        serout servo4_out, baud_code, [r_fwd]
        return

R_Pivot:
        serout servo4_out, baud_code, [l_fwd]
        serout servo4_out, baud_code, [r_halt]
        return

Escape_Left:
        gosub Backup
        pause 1000
        gosub L_Pivot
        pause 500
        return

Escape_Right:
        gosub Backup
        pause 1000
        gosub R_Pivot
        pause 500       
        return

Table Edge Detectors

Since we are developing a tabletop robot, we need some way to detect and avoid the table's edge so that our
robot won't accidentally plummet to the floor and thus become a pile of parts no longer recognizable as a
robot.  To do this, we have selected the  Infrared Sensor package shown in the figure below.  This sensor has
an infrared light source provided by an IR LED packaged together with an infrared detector.  For our
particular use, the LED will be set to a steady "on" state.  The detector continuously measures the amount of
light being reflected from the surface facing the sensor, in this case, the table top. When the sensor is peering
over the edge, there will be a dramatic drop in the detectors output as the warning that we must take some
immediate action to avoid falling off the table. We will install one, downward looking Sensor Package on
each of the four corners of our robot to give it the as much protection as possible.

The detector, used in these sensors, produces an analog output that we will need to convert to a digital signal.  
The Light4 RoboBrick was designed precisely with this need in mind and so we will use it to construct our
Table Edge Detectors.  The Light4 RoboBrick will perform the needed analog−to−digital conversion and it
will output an 8−bit digital number that is a relative measure of the intensity of the IR light reflected back to
the detector.  Let's take a look a the Light4 Programming Table to see what commands we'll need to
accomplish our purpose.  We can check the status of sensor number  0, 1, 2 or 3 by sending the command
"00", "01", "02", or "03"  respectively.  We will receive back from the Brick, an 8−bit number representing

New Page 1

Building a RoboBrick System 11

http://web.gramlich.net/projects/robobricks/light4/rev_b/index.html#Programming
http://web.gramlich.net/projects/robobricks/light4/rev_b/index.html#Programming
http://web.gramlich.net/projects/robobricks/light4/rev_b/index.html#Programming


the input value of the sensor queried. The Light4 board will be connected to the BS2Hub8 at socket 3 (pins 13
and 14).

Light4 Connections

Connecting the Sensor Packages to this board requires nothing more that attaching each of the sensor's
connectors to the appropriate post on the Light4 terminal blocks.  The photos below show how to attach one
of the sensors.  Again for clarity, we have used only one sensor; attaching the other three follows the same
simple approach.  The sensors each have dedicated connections for their LEDs and Detector outputs but they
all share the +5 volt power source and ground .

Programming Chart Exerpts

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Pin
Send 0 0 0 1 0 0 b b

Read pin bb and respond with 8−bit value vvvvvvvv   
Receive v v v v v v v v

Read Low Threshold
Send 0 0 0 1 0 1 b b

Return low threshold for pin bb of llllllll
Receive l l l l l l l l

Set High Threshold
Send 0 0 0 1 1 0 b b

Set high threshold for pin bb to hhhhhhhh
Send h h h h h h h h

Set Low Threshold
Send 0 0 0 1 1 1 b b

Set low threshold for pin bb to llllllll
Send l l l l l l l l

New Page 1

Building a RoboBrick System 12

http://web.gramlich.net/projects/robobricks/light4/rev_b/index.html#Programming


Edge Detector Code

PSEUDO CODE

PROGRAM CODE

'Initializations

        baud_code con 396          'BS2 code for 2400 baud
        dirs = %110111111111111    'pin 13 is an input, all other pins are output

        edge_out con 14
        edge_in  con 13
        high edge_out

        edge0       var byte
        edge1       var byte
        edge2       var byte
        edge3       var byte
        front_edge  var byte
        back_edge   var byte
        threshold   var byte

'Using default high and low thresholds of $c0 and $40

Main:
        gosub find_edge
        branch front_edge, [RearSensor, r_turn, l_turn, back_up]

RearSensor:
        branch back_edge, [do_nothing, r_turn, l_turn, forward]
        pause 3000
        goto Main

'Procedures:

Do_Nothing:
        debug "Do Nothing", cr
        return

R_Turn:
        debug "Turn right − front left sensor or rear left sensor", cr
        return

L_Turn:
        debug "Turn left − front right sensor or rear right sensor", cr
        return

Back_Up:
        debug "Back Up − a rear sensor", cr
        return

Forward:
        debug "Forward − both rear sensors are active", cr
        return

Find_Edge:

'Left Front Detector
        serout edge_out, baud_code, [4]      'Read Pin − Check left front detector
        serin edge_in, baud_code, [edge]    'Value returned is 0 or 1

New Page 1

Building a RoboBrick System 13



        return

Object Detector

In this application, we have chosen to use the DTSonar as our object avoidance sensor.  The DTsonar brick
controls both the DTSonar board and a dedicated servo that can be used to mechanically scan the servo in an
arch of about 160 degrees.  This give us the ability to obtain both bearing (servo position) and distance (sonar
measurement) information about objects in the vicinity of the robot.  For this particular example, we will
establish three positions for the servo: 45 degrees left of center, center, and 45 degrees right of center.  At
each servo position we will use sonar to determine the distance to the closet object.   The robot will respond
by turning away from any "near" object (one that is closer than ??? inches ahead).  If  a near object is on the
left, the robot will turn right: if directly ahead, the robot is arbitrarily designed to turn left; etc.  If the robot is
presented with two or more near objects, it will do a 90 degree course reversal.

DTSonar Connections

Programming Chart Exerpts

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Distance Low Send 0 0 0 0 0 0 0 0

New Page 1

Building a RoboBrick System 14



Return the low order byte llllllll of the
distance

Receive l l l l l l l l

Read Distance High
Send 0 0 0 0 0 0 0 1 Return the high order byte hhhhhhhh

of the distanceReceive h h h h h h h h

Read Distance High and Low
Send 0 0 0 0 0 0 1 0

Return the low and high order bytes
llllllll hhhhhhhh of the distanceReceive l l l l l l l l

Receive h h h h h h h h

Trigger Distance Measure Send 0 0 0 0 0 0 1 1
Trigger a Single Distance
Measurement

Disable Servo Send 0 0 0 0 0 1 0 0 Disable Servo

Enable Servo Send 0 0 0 0 0 1 0 1 Enable Servo

Disable Continuous
Measurement

Send 0 0 0 0 0 1 1 0 Disable Continuous Measurement

Enable Continuous
Measurement

Send 0 0 0 0 0 1 1 1 Enable Continuous Measurement

Increment Servo Send 0 0 0 0 1 0 0 0 Increment servo position by one.

Decrement Servo Send 0 0 0 0 1 0 0 1 Decrement servo positon by one.

Read Servo
Send 0 0 0 0 1 0 1 0 Return servo value ssssssss of the

distanceReceive s s s s s s s s

Read Enables
Send 0 0 0 0 1 0 1 1 Return servo enable s and continuous

distance measurement mReceive 0 0 0 0 0 0 m s

Set Servo Low Send 0 0 0 1 l l l l
Set the low order 4 bits of the servo
position to llll.

Set Servo High Send 0 0 1 0 h h h h
Set the high order 4 bits of the servo
position to hhhh.

DTSonar Code

PSEUDO CODE

PROGRAM CODE

Development & Debugging Bricks

Descriptions & function for each module1. 
Some typical development uses2. 
Some typical debugging uses3. 

New Page 1

Building a RoboBrick System 15


	Table of Contents
	RoboBrick® Tutorial
	Table of Contents:
	Introduction
	RoboBrick Philosophy
	Technical Information
	Building a RoboBrick System

	Introduction
	Why RoboBricks?
	About This Manual
	RoboBrick Philosophy
	Technical Information
	Building a RoboBrick System


